Food v. Fuel Revisited

[imgbelt img=2605112989_c68f960ac9_z.jpg]There’s no reason farms can’t produce both food and fuel. They always have, after all.


here and here.

The authors argue that adding to agricultural output can result a more “efficient” use of existing agricultural resources; using appropriate technology could decrease carbon dioxide emissions and increase the carbon content of agricultural soils.

They note that most agricultural land in the US is “used for animal feed, NOT direct human consumption.” They assert, “Cropland is currently not used efficiently; we actually have more than enough land.” Their solution is to identify new technologies for animal feed and improved productivity of land.

The Michigan State researchers consider several new technologies as a part of their analysis: “ammonia fiber expansion (AFES) pretreatment to produce highly digestible (by ruminants) cellulosic biomass and leaf protein concentrate (LPC) production.” Simply put, these technologies produce both animal feeds (that meet the “three feed requirements—digestible energy (calories), protein, and rough fiber”) and feedstock for cellulosic production from corn grain, corn stover, and cellulosic biomass crops. This model also plans on double cropping about one-third of the land.

Their analysis shows that by using these technologies in the U.S. we can produce ethanol that meets 80 percent of the energy equivalent of imported crude oil while also producing the same amount of animal feed now consumed in the US. In addition this technology would remove 670 Tg of carbon dioxide equivalent per year from the atmosphere.

They conclude:

“The U.S. is the world’s largest petroleum user and also a significant exporter of agricultural commodities. Our analysis shows that the U.S. can produce very large amounts of biofuels, maintain domestic food supplies, continue our contribution to international food supplies, increase soil fertility, and significantly reduce [greenhouse gasses].

“If so, then integrating biofuel production with animal feed production may also be a pathway available to many other countries. Resolving the apparent ‘food versus fuel’ conflict seems to be more a matter of making the right choices rather than hard resource and technical constraints. If we so choose, we can quite readily adapt our agricultural system to produce food, animal feed, and sustainable biofuels.”

Daryll E. Ray holds the Blasingame Chair of Excellence in Agricultural Policy, Institute of Agriculture, University of Tennessee, and is the Director of UT’s Agricultural Policy Analysis Center (APAC). Harwood D. Schaffer is a Research Assistant Professor at APAC.